Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 1.102
JCR 5-Year IF: 0.734
Issues per year: 4
Current issue: Aug 2020
Next issue: Nov 2020
Avg review time: 70 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,666,405 unique visits
676,769 downloads
Since November 1, 2009



No robots online now


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 20 (2020)
 
     »   Issue 3 / 2020
 
     »   Issue 2 / 2020
 
     »   Issue 1 / 2020
 
 
 Volume 19 (2019)
 
     »   Issue 4 / 2019
 
     »   Issue 3 / 2019
 
     »   Issue 2 / 2019
 
     »   Issue 1 / 2019
 
 
 Volume 18 (2018)
 
     »   Issue 4 / 2018
 
     »   Issue 3 / 2018
 
     »   Issue 2 / 2018
 
     »   Issue 1 / 2018
 
 
 Volume 17 (2017)
 
     »   Issue 4 / 2017
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
  View all issues  








LATEST NEWS

2020-Jun-29
Clarivate Analytics published the InCites Journal Citations Report for 2019. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.102 (1.023 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.734.

2020-Jun-11
Starting on the 15th of June 2020 we wiil introduce a new policy for reviewers. Reviewers who provide timely and substantial comments will receive a discount voucher entitling them to an APC reduction. Vouchers (worth of 25 EUR or 50 EUR, depending on the review quality) will be assigned to reviewers after the final decision of the reviewed paper is given. Vouchers issued to specific individuals are not transferable.

2019-Dec-16
Starting on the 15th of December 2019 all paper authors are required to enter their SCOPUS IDs. You may use the free SCOPUS ID lookup form to find yours in case you don't remember it.

2019-Jun-20
Clarivate Analytics published the InCites Journal Citations Report for 2018. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.650, and the JCR 5-Year Impact Factor is 0.639.

2018-May-31
Starting today, the minimum number a pages for a paper is 8, so all submitted papers should have 8, 10 or 12 pages. No exceptions will be accepted.

Read More »


    
 

  4/2011 - 8

Low Complexity Encoder of High Rate Irregular QC-LDPC Codes for Partial Response Channels

KUPIMAI, M. See more information about KUPIMAI, M. on SCOPUS See more information about KUPIMAI, M. on IEEExplore See more information about KUPIMAI, M. on Web of Science, MEESOMBOON, A. See more information about  MEESOMBOON, A. on SCOPUS See more information about  MEESOMBOON, A. on SCOPUS See more information about MEESOMBOON, A. on Web of Science, IMTAWIL, V. See more information about IMTAWIL, V. on SCOPUS See more information about IMTAWIL, V. on SCOPUS See more information about IMTAWIL, V. on Web of Science
 
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (573 KB) | Citation | Downloads: 4 | Views: 3,391

Author keywords
circulant permutation matrices, high rate irregular QC-LDPC codes, low encoding complexity, partial response channels, redundant parity bits

References keywords
codes(15), theory(7), parity(7), density(7), check(7), quasi(6), cyclic(6), shannon(4), limit(4), ldpc(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2011-11-30
Volume 11, Issue 4, Year 2011, On page(s): 47 - 54
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2011.04008
Web of Science Accession Number: 000297764500008
SCOPUS ID: 84856613465

Abstract
Quick view
Full text preview
High rate irregular QC-LDPC codes based on circulant permutation matrices, for efficient encoder implementation, are proposed in this article. The structure of the code is an approximate lower triangular matrix. In addition, we present two novel efficient encoding techniques for generating redundant bits. The complexity of the encoder implementation depends on the number of parity bits of the code for the one-stage encoding and the length of the code for the two-stage encoding. The advantage of both encoding techniques is that few XOR-gates are used in the encoder implementation. Simulation results on partial response channels also show that the BER performance of the proposed code has gain over other QC-LDPC codes.


References | Cited By  «-- Click to see who has cited this paper

[1] R. G. Gallager, "Low density parity check codes," IRE Trans. Inf. Theory, vol.IT-8, pp.21-28, Jan. 1962.
[CrossRef] [SCOPUS Times Cited 4334]


[2] D. J. C. MacKay and R. M. Neal, "Good error correcting codes based on very sparse matrices," IEEE Trans. Inf. Theory, vol.45, pp. 399-431, Mar. 1999.
[CrossRef] [Web of Science Times Cited 2218] [SCOPUS Times Cited 2783]


[3] C. Berrou, A. Glavieux, and P. Thitimajshima, "Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1," Proc. IEEE Int. Conf. on Commun., vol.2, pp.1064-1070, May 1993.
[CrossRef]


[4] D. J. C. Mackay and R. M. Neal, "Near Shannon limit performance of low density parity check codes," Electron. Lett., vol.32, no.18, pp.1645-1646, Aug. 1996.
[CrossRef] [Web of Science Times Cited 1189] [SCOPUS Times Cited 1730]


[5] T. J. Richardson, M. A. Shokrolahi, and R.L. Urbanke, "Design of capacity-approaching irregular low-density parity-check codes," IEEE Trans. Inf. Theory, vol.47, no.2, pp.619-637, Feb. 2001.
[CrossRef] [Web of Science Times Cited 1779] [SCOPUS Times Cited 2124]


[6] S. Y. Chung, G. D. Forney, T. J. Richardson, and R. L. Urbanke, "On the design of low density parity check codes within 0.0045 dB of the Shannon limit," IEEE Commun .Lett., vol.5, no.2, pp.58-60, Feb. 2001.
[CrossRef] [Web of Science Times Cited 858] [SCOPUS Times Cited 1099]


[7] L. Chen, X. Jun, I. Djurdjevic, and S. Lin, "Near-Shannon-limit quasi-cyclic low-density parity-check codes," IEEE Trans. Commun., vol.52, no.7, pp. 1038- 1042, July 2004.
[CrossRef] [Web of Science Times Cited 138] [SCOPUS Times Cited 169]


[8] IEEE P802.11n TM/D1.02, "Draft Amendment to Standard Information Technology Part 11: Wireless Lan Medium Access Control (MAC) and Physical Layer (PHY) specification: Enhancements for higher Throughput," IEEE 802.11 document, July 2006.

[9] IEEE P 802.16eTM, "Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access System," IEEE 802.16 document, Feb 2005.

[10] A. Dholakia, E.Eleftheriou, T.Mittelholzer and M.P.C. Fossorier, "Capacity-aapproaching code; Can they be applied to the magnetic recording channel?," IEEE Commun. Mag., vol. 42, no. 2, pp. 122-130, Feb. 2004.
[CrossRef] [Web of Science Times Cited 23] [SCOPUS Times Cited 25]


[11] H. Zhong, T. Zhang and E. F. Hartsch, "Quasi-Cyclic LDPC code for the magnetic Recording Channel Code Design and VLSI Implementation," IEEE Trans. Mag., vol.43, no.3, pp. 1118-1123, March. 2007.
[CrossRef] [Web of Science Times Cited 29] [SCOPUS Times Cited 35]


[12] X. Liu, W. Zhang and Z. Fan, "Construct of Quasi-Cyclic LDPC Codes and the performance on the PR4 Equalizer MRC Channel," IEEE Trans. Mag., vol.45, no.10, pp. 3699-3702, Oct. 2009.
[CrossRef] [Web of Science Times Cited 14] [SCOPUS Times Cited 16]


[13] M. P. C. Fossorier, "Quasi-Cyclic low density parity check codes from circulant permutation matrices," IEEE Trans. Inform. Theory, vol. 50, no. 8, pp. 1788-1794, Aug. 2004.
[CrossRef] [Web of Science Times Cited 711] [SCOPUS Times Cited 922]


[14] A. Sridharan, D. J. Costello-Jr., D. Sridhara, T. E. Fuja, and R.M. Tanner, "LDPC Block and Convolutional Codes Based on Circulant Matrices," IEEE Trans. Inform. Theory, vol. 50, no.12, pp. 2966-2984, Dec. 2004.
[CrossRef] [Web of Science Times Cited 350] [SCOPUS Times Cited 404]


[15] S. Myung, K. Yang, and J. Kim, "Quasi-Cyclic LDPC codes for fast encoding," IEEE Trans. Inform. Theory, vol. 51, pp. 2894-2901, Aug. 2005.
[CrossRef] [Web of Science Times Cited 167] [SCOPUS Times Cited 241]


[16] Z. Li., L. Chen, L. Zeng, S. Lin, and W. H. Fong, "Efficient encoding of quasi-cyclic low density parity-check codes," IEEE Trans. Commun., vol. 54, no.1, pp. 71-81, Jan. 2006.
[CrossRef] [Web of Science Times Cited 265] [SCOPUS Times Cited 360]


[17] D. J. C. Mackay and M. Davey, "Evaluation of Gallager codes for short block length and high rate applications," in Proc. IMA Workshop Codes, System-Margulis and Graphical Models, 1999.

[18] R. M. Tanner, "A Recursive Approach to Low Complexity Codes," IEEE Trans. Inform. Theory, vol. 27, pp. 533-547, Sep. 1981.
[CrossRef] [Web of Science Times Cited 1604] [SCOPUS Times Cited 1975]


[19] J. Hagenuer and P. Hoecher, "A Viterbi algorithm with soft decision output and its application," in Proc. IEEE GLOBECOM, pp. 47.11-47, Dallas, TX, Nov. 1989.
[CrossRef]


References Weight

Web of Science® Citations for all references: 9,345 TCR
SCOPUS® Citations for all references: 16,217 TCR

Web of Science® Average Citations per reference: 492 ACR
SCOPUS® Average Citations per reference: 854 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2020-09-25 15:20 in 114 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2020
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: