Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.595
JCR 5-Year IF: 0.661
Issues per year: 4
Current issue: Nov 2017
Next issue: Feb 2018
Avg review time: 105 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,788,756 unique visits
513,881 downloads
Since November 1, 2009



Robots online now
YandexBot


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 17 (2017)
 
     »   Issue 4 / 2017
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
 Volume 14 (2014)
 
     »   Issue 4 / 2014
 
     »   Issue 3 / 2014
 
     »   Issue 2 / 2014
 
     »   Issue 1 / 2014
 
 
  View all issues  


FEATURED ARTICLE

Wind Speed Prediction with Wavelet Time Series Based on Lorenz Disturbance, ZHANG, Y., WANG, P., CHENG, P., LEI, S.
Issue 3/2017

AbstractPlus






LATEST NEWS

2017-Jun-14
Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

2017-Apr-04
We have the confirmation Advances in Electrical and Computer Engineering will be included in the EBSCO database.

2017-Feb-16
With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "BigData - " before the paper title in OpenConf.

2017-Jan-30
We have the confirmation Advances in Electrical and Computer Engineering will be included in the Gale database.

2016-Dec-17
IoT is a new emerging technology domain which will be used to connect all objects through the Internet for remote sensing and control. IoT uses a combination of WSN (Wireless Sensor Network), M2M (Machine to Machine), robotics, wireless networking, Internet technologies, and Smart Devices. We dedicate a special section of Issue 2/2017 to IoT. Prospective authors are asked to make the submissions for this section no later than the 31st of March 2017, placing "IoT - " before the paper title in OpenConf.

Read More »


    
 

  4/2011 - 12

Optimal Design Solutions for Permanent Magnet Synchronous Machines

TUDORACHE, T. See more information about TUDORACHE, T. on SCOPUS See more information about TUDORACHE, T. on IEEExplore See more information about TUDORACHE, T. on Web of Science, POPESCU, M. See more information about POPESCU, M. on SCOPUS See more information about POPESCU, M. on SCOPUS See more information about POPESCU, M. on Web of Science
 
Click to see author's profile on See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,151 KB) | Citation | Downloads: 1,747 | Views: 3,789

Author keywords
optimal design, permanent magnet machines, numerical analysis, experimental validation

References keywords
permanent(9), torque(8), magnet(8), cogging(7), applications(5), optimization(4), motors(4), brush(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2011-11-30
Volume 11, Issue 4, Year 2011, On page(s): 77 - 82
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2011.04012
Web of Science Accession Number: 000297764500012
SCOPUS ID: 84856602544

Abstract
Quick view
Full text preview
This paper presents optimal design solutions for reducing the cogging torque of permanent magnets synchronous machines. A first solution proposed in the paper consists in using closed stator slots that determines a nearly isotropic magnetic structure of the stator core, reducing the mutual attraction between permanent magnets and the slotted armature. To avoid complications in the windings manufacture technology the stator slots are closed using wedges made of soft magnetic composite materials. The second solution consists in properly choosing the combination of pole number and stator slots number that typically leads to a winding with fractional number of slots/pole/phase. The proposed measures for cogging torque reduction are analyzed by means of 2D/3D finite element models developed using the professional Flux software package. Numerical results are discussed and compared with experimental ones obtained by testing a PMSM prototype.


References | Cited By  «-- Click to see who has cited this paper

[1] I. A. Viorel, L. Strete, K. Hameyer, "Construction and Design of a Modular Permanent Magnet Transverse Flux Generator", Advances in Electrical and Computer Engineering Journal, Vol. 10, No. 1, pp. 3-6, 2010.
[CrossRef] [Full Text] [Web of Science Times Cited 4] [SCOPUS Times Cited 6]


[2] S. Hosseini, J. S. Moghani, B. B. Jensen, "Accurate Modeling of a Transverse Flux Permanent Magnet Generator Using 3D Finite Element Analysis", Advances in Electrical and Computer Engineering Journal, Vol. 11, No. 3, pp. 115-120, 2011.
[CrossRef] [Full Text] [Web of Science Times Cited 7] [SCOPUS Times Cited 7]


[3] B. Abdi, J. Milimonfared, J. Shokrollahi Moghani, A. Kashefi Kaviani, "Simplified Design and Optimization of Slotless Synchronous PM Machine for Micro-Satellite Electro-Mechanical Batteries", Advances in Electrical and Computer Engineering Journal, Vol. 9, No. 3, pp. 84-88, 2009.
[CrossRef] [Full Text] [Web of Science Times Cited 7] [SCOPUS Times Cited 16]


[4] P. Zheng, J. Zhao, R. Liu, C. Tong, Q. Wu, "Magnetic Characteristics Investigation of an Axial-Axial Flux Compound-Structure PMSM Used for HEVs", IEEE Trans. Magn., Vol. 46, No. 6, pp. 2191 - 2194, 2010.
[CrossRef] [Web of Science Times Cited 38] [SCOPUS Times Cited 46]


[5] J. Sopanen, V. Ruuskanen, J. Nerg and J. Pyrhonen, "Dynamic Torque Analysis of a Wind Turbine Drive Train Including a Direct-Driven Permanent Magnet Generator", Trans. Ind. Electron., Vol. 58, No. 9, pp. 3859 - 3867, 2010.
[CrossRef] [Web of Science Times Cited 45] [SCOPUS Times Cited 61]


[6] B. Vaseghi, N. Takorabet, F. Meibody-Tabar, "Investigation of a Novel Five-Phase Modular Permanent-Magnet In-Wheel Motor", IEEE Trans. Magn., Vol. 47, No. 10, pp. 4084- 4087, 2011.
[CrossRef] [Web of Science Times Cited 30] [SCOPUS Times Cited 36]


[7] T. Tudorache, L. Melcescu, M. Popescu, M. Cistelecan, "Finite Element Analysis of Cogging Torque in Low Speed Permanent Magnets Wind Generators", Proc. of International Conference on Renewable Energies and Power Quality (ICREPQ 2008), Paper 412, 2008, Spain.

[8] Y. Tomigashi, T. Ueta, K. Yokotani, K. Ikegami, "Reducing Cogging Torque of Interior Permanent Magnet Synchronous Motor for Electric Bicycles", Proc. of the European Conference on Power Electronics and Applications, (EPE 2005), P.8, 2005, Germany.
[CrossRef]


[9] A. Jabbari, M. Shakeri, A. S. Gholamian, "Rotor Pole Shape Optimization of Permanent Magnet Brushless DC Motors Using the Reduced Basis Technique", Advances in Electrical and Computer Engineering Journal, Vol. 9, No. 2, pp. 75-81, 2009.
[CrossRef] [Full Text] [SCOPUS Times Cited 7]


[10] A. Jabbari, M. Shakeri, A. Nabavi Niaki, "Iron Pole Shape Optimization of IPM Motors Using an Integrated Method", Advances in Electrical and Computer Engineering Journal, Vol. 10, No. 1, pp. 67-70, 2010.
[CrossRef] [Full Text] [Web of Science Times Cited 4] [SCOPUS Times Cited 4]


[11] W. Fei and P. C. K. Luk, "A New Technique of Cogging Torque Suppression in Direct-Drive Permanent Magnet Brushless Machines", International IEEE Electric Machines and Drives Conference (IEMDC 2009), pp. 9-16, 2009, USA.
[CrossRef] [Web of Science Times Cited 2] [SCOPUS Times Cited 8]


[12] T. Tudorache, L. Melcescu, M. Popescu, "Methods for Cogging Torque Reduction of Directly Driven PM Wind Generators", Proc. of IEEE Conference on Optimization of Electrical and Electronics Equipment (OPTIM 2010), 2010, Romania.
[CrossRef] [Web of Science Times Cited 5] [SCOPUS Times Cited 17]


[13] S. A. Saied, K. Abbaszadeh, "Cogging Torque Reduction in Brushless DC Motors Using Slot-Opening Shift", Advances in Electrical and Computer Engineering Journal, Vol. 9, No. 1, pp. 28-33, 2009.
[CrossRef] [Full Text] [SCOPUS Times Cited 22]


[14] M. S. Islam, S. Mir, T. Sebastian, "Issues in Reducing the Cogging Torque of Mass-Produced Permanent-Magnet Brushless DC Motor", IEEE Trans. on Ind. Applications, vol. 40, no. 3, May-June, 2004.
[CrossRef] [Web of Science Times Cited 115] [SCOPUS Times Cited 160]


[15] N. Bianchi, S. Bolognani, "Design Techniques for Reducing the Cogging Torque in Surface-Mounted PM Motors", IEEE Trans. on Ind. Applications, vol. 38, no. 5, Sept-Oct, 2002.
[CrossRef] [Web of Science Times Cited 363] [SCOPUS Times Cited 505]


[16] L. Hultman, O. Andersson, "Advances in SMC Technology - Materials and Applications", Proc. of Advanced Magnetic Materials and their Applications, 2009, Germany.

References Weight

Web of Science® Citations for all references: 620 TCR
SCOPUS® Citations for all references: 895 TCR

Web of Science® Average Citations per reference: 39 ACR
SCOPUS® Average Citations per reference: 56 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2017-12-12 00:29 in 87 seconds.




Note1: Web of Science® is a registered trademark of Thomson Reuters.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2017
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: