Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 1.102
JCR 5-Year IF: 0.734
Issues per year: 4
Current issue: Nov 2020
Next issue: Feb 2021
Avg review time: 57 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,740,509 unique visits
694,417 downloads
Since November 1, 2009



Robots online now
Googlebot
PetalBot


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 20 (2020)
 
     »   Issue 4 / 2020
 
     »   Issue 3 / 2020
 
     »   Issue 2 / 2020
 
     »   Issue 1 / 2020
 
 
 Volume 19 (2019)
 
     »   Issue 4 / 2019
 
     »   Issue 3 / 2019
 
     »   Issue 2 / 2019
 
     »   Issue 1 / 2019
 
 
 Volume 18 (2018)
 
     »   Issue 4 / 2018
 
     »   Issue 3 / 2018
 
     »   Issue 2 / 2018
 
     »   Issue 1 / 2018
 
 
 Volume 17 (2017)
 
     »   Issue 4 / 2017
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
  View all issues  








LATEST NEWS

2020-Jun-29
Clarivate Analytics published the InCites Journal Citations Report for 2019. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.102 (1.023 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.734.

2020-Jun-11
Starting on the 15th of June 2020 we wiil introduce a new policy for reviewers. Reviewers who provide timely and substantial comments will receive a discount voucher entitling them to an APC reduction. Vouchers (worth of 25 EUR or 50 EUR, depending on the review quality) will be assigned to reviewers after the final decision of the reviewed paper is given. Vouchers issued to specific individuals are not transferable.

2019-Dec-16
Starting on the 15th of December 2019 all paper authors are required to enter their SCOPUS IDs. You may use the free SCOPUS ID lookup form to find yours in case you don't remember it.

2019-Jun-20
Clarivate Analytics published the InCites Journal Citations Report for 2018. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.650, and the JCR 5-Year Impact Factor is 0.639.

2018-May-31
Starting today, the minimum number a pages for a paper is 8, so all submitted papers should have 8, 10 or 12 pages. No exceptions will be accepted.

Read More »


    
 

  3/2011 - 5

 HIGH-IMPACT PAPER 

The Hybrid Method for On-line Harmonic Analysis

KNEZEVIC, J. M. See more information about KNEZEVIC, J. M. on SCOPUS See more information about KNEZEVIC, J. M. on IEEExplore See more information about KNEZEVIC, J. M. on Web of Science, KATIC, V. A. See more information about KATIC, V. A. on SCOPUS See more information about KATIC, V. A. on SCOPUS See more information about KATIC, V. A. on Web of Science
 
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (822 KB) | Citation | Downloads: 972 | Views: 4,147

Author keywords
adaptive filters, discrete Fourier transforms, harmonic analysis, power electronics and power quality

References keywords
power(20), harmonics(10), electronics(10), signal(9), industrial(9), time(7), harmonic(7), delivery(7), processing(6), adaptive(6)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2011-08-31
Volume 11, Issue 3, Year 2011, On page(s): 29 - 34
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2011.03005
Web of Science Accession Number: 000296186700005
SCOPUS ID: 80055085161

Abstract
Quick view
Full text preview
The novel hybrid method of the Discrete Fourier Transform (DFT) and the Enhanced Phase-Locked Loop (EPLL) has been presented. The original well-known methods and the Hybrid method have been analysed and tested in several simulations and experiments. The methods are implemented on the Digital Signal Processor and compared in a real time power quality application. Although it requires a bit higher computational effort, the Hybrid method compared to original methods shows advantages for on-line harmonic analysis.


References | Cited By  «-- Click to see who has cited this paper

[1] D. Sabin, A. Sundaram, "Quality Enhances Reliability," IEEE Spectrum, vol.33, no.2, Feb.1996, pp.34-41.
[CrossRef] [Web of Science Times Cited 76] [SCOPUS Times Cited 120]


[2] V. Maier, S. G. Pavel, C. D. Maier, I. Birou, "Correct Application of the Discrete Fourier Transform in Harmonics," Advances in Electrical and Computer Engineering, Volume 8, Number 1, Year 2008, pp. 26 - 30.
[CrossRef] [Full Text] [Web of Science Times Cited 8] [SCOPUS Times Cited 10]


[3] S. Haykin, A. H. Sayed, J. R. Zeidler, P. Yee, P. C. Wei, "Adaptive Tracking of Linear Time-Variant Systems by Extended RLS Algorithms," IEEE Trans. on Signal Processing, vol. 45, no. 5, May 1997, pp. 1118-1128.
[CrossRef] [Web of Science Times Cited 130] [SCOPUS Times Cited 174]


[4] M. Mojiri, M. Karimi-Ghartemani, A. Bakhshai, "Processing of Harmonics Using an Adaptive Notch Filter," IEEE Trans. on Power Delivery, vol. 25, no. 2, Apr. 2010, pp. 534-542.
[CrossRef] [Web of Science Times Cited 53] [SCOPUS Times Cited 66]


[5] D. Yazdani, A. Bakhshai, G. Joos, M. Mojiri, "A Real-Time Extraction of Harmonic and Reactive Current in a Nonlinear Load for Grid-Connected Converters," IEEE Trans. on Industrial Electronics, vol. 56, no. 6, June 2009, pp. 2185-2189.
[CrossRef] [Web of Science Times Cited 43] [SCOPUS Times Cited 53]


[6] G. W. Chang, C. I. Chen, Y. F. Teng, "Radial-Basis-Function-Based Neural Network for Harmonic Detection," IEEE Trans. on Industrial Electronics, vol. 57, no. 6, June 2010, pp.2171-2179.
[CrossRef] [Web of Science Times Cited 105] [SCOPUS Times Cited 147]


[7] H. C. Lin, "Intelligent neural network-based fast power system harmonic detection," IEEE Trans. on Industrial Electronics, vol. 54, no. 1, Feb. 2007, pp. 43-52.
[CrossRef] [Web of Science Times Cited 144] [SCOPUS Times Cited 176]


[8] J. Mazumdar, R. G. Harley, "Recurrent neural networks trained with back propagation through time algorithm to estimate nonlinear load harmonic currents," IEEE Trans. on Industrial Electronics, vol. 55, no. 9, Sep. 2008, pp. 3484-3491.
[CrossRef] [Web of Science Times Cited 63] [SCOPUS Times Cited 72]


[9] Z. Leonowicz, T. Lobos, J. Rezmer, "Advanced Spectrum Estimation Methods for Signal Analysis in Power Electronics," IEEE Trans. on Industrial Electronics, vol. 50, no. 3, June 2003, pp.514-519.
[CrossRef] [Web of Science Times Cited 104] [SCOPUS Times Cited 150]


[10] G. W. Chang, C. Chen, Q.-W. Liang, "A Two-Stage ADALINE for Harmonics and Interharmonics Measurement," IEEE Trans. on Industrial Electronics, vol. 56, no. 6, June 2009, pp. 2220-2228.
[CrossRef] [Web of Science Times Cited 102] [SCOPUS Times Cited 115]


[11] A. Van den Enden and N. Verhoeckx, Discrete-Time Signal Processing. New York: Prentice-Hall, 1989. [PermaLink]

[12] V. A. Katic, "Computer based harmonic measurement systems: Discussion and a realization," in Proc. IEEE Int. Conf. Harmonics in Power Systems— ICHPS V, Atlanta, GA, Sept. 1992, pp. 16-22.
[CrossRef] [SCOPUS Times Cited 12]


[13] M. Karimi-Ghartemani and M. R. Iravani, "A Nonlinear Adaptive Filter for Online Signal Analysis in Power Systems: Applications," IEEE Trans. on Power Delivery, vol. 17, no. 2, Apr. 2002, pp. 617-622.
[CrossRef] [Web of Science Times Cited 216] [SCOPUS Times Cited 295]


[14] A. K. Ziarani and A. Konrad, "A method of extraction of non-stationary sinusoids," Signal Processing, vol. 84, no. 8, 2004, pp. 1323-1346.
[CrossRef] [Web of Science Times Cited 84] [SCOPUS Times Cited 112]


[15] M. Karimi-Ghartemani and M. R. Iravani, "Measurement of harmonics/inter-harmonics of time-varying frequencies," IEEE Trans. on Power Delivery, vol. 20, no. 1, Jan. 2005, pp. 23-31.
[CrossRef] [Web of Science Times Cited 124] [SCOPUS Times Cited 167]


[16] M. Karimi-Ghartemani and A. K. Ziarani, "Performance characterization of a nonlinear system as both an adaptive notch filter and a phase-locked loop," Int. Journal on Adaptive Control Signal Processing, vol. 18, 2004, pp. 23-53.
[CrossRef] [Web of Science Times Cited 28] [SCOPUS Times Cited 48]


[17] M. Karimi-Ghartemani and A. K. Ziarani, "A nonlinear time-frequency analysis method," IEEE Trans. Signal Process., vol. 52, no. 6, Jun. 2004, pp. 1585-1595.
[CrossRef] [Web of Science Times Cited 38] [SCOPUS Times Cited 49]


[18] D. M. McNamara, A. K. Ziarani, T. H. Ortmeyer, "A New Technique of Measurement of Non-stationary Harmonics," IEEE Trans. on Power Delivery, vol. 22, no. 1, Jan 2007, pp.387-395.
[CrossRef] [Web of Science Times Cited 17] [SCOPUS Times Cited 35]


[19] A. A. Girgis, W. B. Chang and E. B. Makram, "A digital recursive measurement scheme for on-line tracking of power system harmonics", IEEE Trans. on Power Delivery, vol. 6, pp. 1153-1991.
[CrossRef] [Web of Science Times Cited 233] [SCOPUS Times Cited 313]


[20] F. D. Freijedo, J. Doval-Gandoy, O. Lopez, P. Fernandez-Comesana, C. Martinez-Penalver, "A Signal-Processing Adaptive Algorithm for Selective Current Harmonic Cancellation in Active Power Filters," IEEE Trans. on Industrial Electronics, vol. 56, no. 8, August 2009, pp.2829-2840.
[CrossRef] [Web of Science Times Cited 96] [SCOPUS Times Cited 117]


[21] E. Lavopa, P. Zanchetta, M. Sumner, F. Cupertino, "Real-Time Estimation of Fundamental Frequency and Harmonics for Active Shunt Power Filters in Aircraft Electrical Systems," IEEE Trans. on Industrial Electronics, vol. 56, no. 8, August 2009, pp. 2875-2884.
[CrossRef] [Web of Science Times Cited 97] [SCOPUS Times Cited 136]


[22] V. A. Katic, J. M. Knezevic, and D. Graovac, "Application-oriented comparison of the methods for AC/DC converter harmonics analysis," IEEE Trans. on Industrial Electronics, vol. 50, no. 6, Dec. 2003, pp. 1100-1108.
[CrossRef] [Web of Science Times Cited 18] [SCOPUS Times Cited 23]


[23] J. Z. Yang, C. S. Yu, and C. W. Liu, "A New Method for Power Signal Harmonic Analysis," IEEE Trans. on Power Delivery, vol. 20, no. 2, April 2005, pp.1235-1239.
[CrossRef] [Web of Science Times Cited 55] [SCOPUS Times Cited 70]


[24] D. Graovac, V. A. Katic, A. Rufer, "Power Quality Compensation Using Universal Power Quality Conditioning System," IEEE Power Engineering Review, vol.20, no.12, Dec.2000, pp.58-60.
[CrossRef] [SCOPUS Times Cited 69]


[25] D. Graovac, V. A. Katic, A. Rufer, "Power Quality Problems Compensation With Universal Power Quality Conditioning System", IEEE Trans. on Power Delivery, vol.22, no.2, April 2007, pp.968-976.
[CrossRef] [Web of Science Times Cited 67] [SCOPUS Times Cited 103]


References Weight

Web of Science® Citations for all references: 1,901 TCR
SCOPUS® Citations for all references: 2,632 TCR

Web of Science® Average Citations per reference: 76 ACR
SCOPUS® Average Citations per reference: 105 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2021-01-14 01:43 in 150 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2021
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: