Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.459
JCR 5-Year IF: 0.442
Issues per year: 4
Current issue: Nov 2016
Next issue: Feb 2017
Avg review time: 95 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 644266260
doi: 10.4316/AECE


TRAFFIC STATS

1,459,165 unique visits
468,764 downloads
Since November 1, 2009



No robots online now


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
 Volume 14 (2014)
 
     »   Issue 4 / 2014
 
     »   Issue 3 / 2014
 
     »   Issue 2 / 2014
 
     »   Issue 1 / 2014
 
 
 Volume 13 (2013)
 
     »   Issue 4 / 2013
 
     »   Issue 3 / 2013
 
     »   Issue 2 / 2013
 
     »   Issue 1 / 2013
 
 
  View all issues  


FEATURED ARTICLE

ABC Algorithm based Fuzzy Modeling of Optical Glucose Detection, SARACOGLU, O. G., BAGIS, A., KONAR, M., TABARU, T. E.
Issue 3/2016

AbstractPlus






LATEST NEWS

2016-Jun-14
Thomson Reuters published the Journal Citations Report for 2015. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.459, and the JCR 5-Year Impact Factor is 0.442.

2015-Dec-04
Starting with Issue 2/2016, the article processing charge is 300 EUR for each article accepted for publication. The charge of 25 EUR per page for papers over 8 pages will not be changed. Details are available in the For authors section.

2015-Jun-10
Thomson Reuters published the Journal Citations Report for 2014. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.529, and the JCR 5-Year Impact Factor is 0.476.

2015-Feb-09
Starting on the 9th of February 2015, we require all authors to identify themselves, when a submission is made, by entering their SCOPUS Author IDs, instead of the organizations, when available. This information will let us better know the publishing history of the authors and better assign the reviewers on different topics.

2015-Feb-08
We have more than 500 author names on the ban-list for cheating, including plagiarism, false signatures on the copyright form, false E-mail addresses and even tentative to impersonate well-known researchers in order to become a reviewer of our Journal. We maintain a full history of such incidents.

Read More »


    
 

  3/2011 - 3

Fault Tolerant Neural Network for ECG Signal Classification Systems

MERAH, M. See more information about MERAH, M. on SCOPUS See more information about MERAH, M. on IEEExplore See more information about MERAH, M. on Web of Science, OUAMRI, A. See more information about  OUAMRI, A. on SCOPUS See more information about  OUAMRI, A. on SCOPUS See more information about OUAMRI, A. on Web of Science, NAIT-ALI, A. See more information about  NAIT-ALI, A. on SCOPUS See more information about  NAIT-ALI, A. on SCOPUS See more information about NAIT-ALI, A. on Web of Science, KECHE, M. See more information about KECHE, M. on SCOPUS See more information about KECHE, M. on SCOPUS See more information about KECHE, M. on Web of Science
 
Click to see author's profile on See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,855 KB) | Citation | Downloads: 1,042 | Views: 2,268

Author keywords
fault tolerant, artificial neural networks, hybrid backpropagation algorithms, medical diagnosis

References keywords
neural(19), networks(13), network(5), learning(5), fault(5), systems(4), algorithms(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2011-08-31
Volume 11, Issue 3, Year 2011, On page(s): 17 - 24
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2011.03003
Web of Science Accession Number: 000296186700003
SCOPUS ID: 80055082608

Abstract
Quick view
Full text preview
The aim of this paper is to apply a new robust hardware Artificial Neural Network (ANN) for ECG classification systems. This ANN includes a penalization criterion which makes the performances in terms of robustness. Specifically, in this method, the ANN weights are normalized using the auto-prune method. Simulations performed on the MIT - BIH ECG signals, have shown that significant robustness improvements are obtained regarding potential hardware artificial neuron failures. Moreover, we show that the proposed design achieves better generalization performances, compared to the standard back-propagation algorithm.


References | Cited By  «-- Click to see who has cited this paper

[1] I. Splawski, J. Shen, K.W. Timothy, G.M. Vincent, M.H. Lehmann, MT. Keating, "Genomic structure of three long QT syndrome genes," Kvlqt, Herg, and Kcne1. Genomics, No. 50, pp. 86-97, 1998,
[CrossRef] [Web of Science Times Cited 172] [SCOPUS Times Cited 202]


[2] C. J. James, C. W. Hesse, "Independent component analysis for biomedical signals," Physiol Meas, No. 26, Pp.15-39, 2005,
[CrossRef] [Web of Science Times Cited 135] [SCOPUS Times Cited 245]


[3] C. Chui, K. Mehrotra, K. M. Chilukuri, R. Sanjay, "Modifying Training Algorithms for Improved Fault Tolerance," IEEE International Conference on Neural Networks, Florida, pp. 333-338, 1994,
[CrossRef]


[4] A. Hyvarinen, E. Oja, "Independent component analysis: algorithms and applications," Neural Network, No. 13, pp. 411-430, 2000,
[CrossRef] [Web of Science Times Cited 2695] [SCOPUS Times Cited 3632]


[5] T. Y. Kwok, D. Y. Yeung, "Constructive Algorithms for Structure Learning in Feedforward Neural Networks for Regression Problems," IEEE Trans. Neural Networks, Vol. 8, No. 3, pp. 630-645, May 1997,
[CrossRef] [Web of Science Times Cited 221] [SCOPUS Times Cited 281]


[6] F. L. Luo, "Applied Neural Networks for Signal Processing," Cambridge Univ. Press, Cambridge, Mass., 1999.

[7] C. Campbell, "Constructive learning techniques for designing neural network systems," In CT Leondes, editor, Neural Network Systems Technologies and Applications. Academic Press, 1997.

[8] M. L. Nasir, R.I. John, S.C. Bennett, "Selecting the neural network topology for student modelling of prediction of corporate bankruptcy, " Campus-Wide Information Systems, Vol. 18, No. 1, pp. 13 - 22, 2001,
[CrossRef] [SCOPUS Record]


[9] F. BLAYO, "Reseaux de neurones artificiels du laboratoire au marche industriel," SAMOS (Statistiques Appliquees et Modelisation Stochastiques), Universite Paris1, Pantheon Sorbonne 1998.

[10] S. John, C. L. Andrew , "Prediction error of a fault tolerant neural network," Neurocomputing, Vol. 72, No.3, pp. 653-658, December 2008,
[CrossRef] [Web of Science Times Cited 1] [SCOPUS Times Cited 2]


[11] C. S. Lin, I. C. Wu, "Maximizing Fault Tolerance in Multilayer Neural Networks", IEEE International Conference on Neural Networks, Florida, pp. 419-424 , 1994,
[CrossRef]


[12] T. Kurita, H. Asoh, S. Umeyama, A. Hosomi, "A structural Learning by Adding Independant Noises to Hidden Units", IEEE International Conference in Neural Networks, Florida, pp. 275-278, 1994,
[CrossRef]


[13] A. S . Weigend, D.E. Rumelhart, A.B. Huberman, "Generalization by Weight-Elimination applied to Currency Exchange Rate Prediction," IEEE International Conference on Neural Networks, Vol. 1, pp. 837-841, 1991,
[CrossRef]


[14] D. G. Jeong, S.Y. Lee, "Merging back-propagation and Hebbian learning rules for robust classifications," Neural Networks, Vol. 9, pp. 1213-1222, 1996,
[CrossRef] [Web of Science Times Cited 27] [SCOPUS Times Cited 27]


[15] W. Finnoff, F. Hergert" Improving model selection by non convergent methods, " Neural Networks, Vol. 6, pp. 771-783, 1993,
[CrossRef] [Web of Science Times Cited 109] [SCOPUS Times Cited 116]


[16] A. Korgh, J.A. Hertz, "A simple weight decay can improve generalization," Advances in neural information processing systems, San Mateo, CA, Morgan Kaumann, Vol. 4, pp. 950 - 957, 1992.

[17] Y. LE Cun, JS. Denker, S.A. Solla, "Optimal brain damage," Adv. In Neural Info. Proc. Sys, Morgan Kaufmann, Vol. 2, pp. 598-605, 1990.

[18] B. E. Segee, M.J. Carter, "Fault tolerance of pruned multilayer networks," Digest IJCNN, Vol. 2, pp. 447 - 452, 1991,
[CrossRef]


[19] L. Prechelt, "Connection pruning with static and adaptive pruning schedules," Fakultät für Informatik, Universität Karlsruhe, Germany, 8 Nov. 1995,
[CrossRef] [Web of Science Times Cited 15] [SCOPUS Times Cited 19]


[20] N. C. Hammadi, I. Hideo, "A Leaning Algorithm for Fault Tolerant Feedforward Neural Networks," Chiba Univesity, Chiba-shi, Japan, pp. 263, 1996.

[21] M. Merah, B. Nacredine "Algorithme de retro-propagation du gradient avec Penalisation des poids R.P.G.P. » CNIE, USTO, 15-16 December 2002.

[22] S. Y. Jeong, S. Y. Lee, "Adaptive learning algorithms to incorporate additional functional constraints into neural networks," Neurocomputing, Vol. 35, pp. 73-90, 2000,
[CrossRef] [Web of Science Times Cited 19] [SCOPUS Times Cited 24]


[23] M. Merah, A. Ouamri, "Analyse et traitements de l'ECG pour la conception d'une base d'apprentissage d'un R.N.A," The 3rd International Summer School on Signal Processing and its Applications, Jijel, Algeria, pp. 08-12, July 2006.



References Weight

Web of Science® Citations for all references: 3,394 TCR
SCOPUS® Citations for all references: 4,548 TCR

Web of Science® Average Citations per reference: 141 ACR
SCOPUS® Average Citations per reference: 190 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2016-12-01 08:40 in 83 seconds.




Note1: Web of Science® is a registered trademark of Thomson Reuters.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2016
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: