Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.699
JCR 5-Year IF: 0.674
Issues per year: 4
Current issue: Aug 2018
Next issue: Nov 2018
Avg review time: 82 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,072,729 unique visits
550,225 downloads
Since November 1, 2009



Robots online now
SemanticScholar


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 18 (2018)
 
     »   Issue 3 / 2018
 
     »   Issue 2 / 2018
 
     »   Issue 1 / 2018
 
 
 Volume 17 (2017)
 
     »   Issue 4 / 2017
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
  View all issues  








LATEST NEWS

2018-Jun-27
Clarivate Analytics published the InCites Journal Citations Report for 2017. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.699, and the JCR 5-Year Impact Factor is 0.674.

2017-Jun-14
Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

2017-Feb-16
With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "BigData - " before the paper title in OpenConf.

Read More »


    
 

  3/2010 - 8

Detailed Simulation of Transformer Internal Fault in Power System by Diakoptical Concept

KOOCHAKI, A. See more information about KOOCHAKI, A. on SCOPUS See more information about KOOCHAKI, A. on IEEExplore See more information about KOOCHAKI, A. on Web of Science, KOUHSARI, S. M. See more information about KOUHSARI, S. M. on SCOPUS See more information about KOUHSARI, S. M. on SCOPUS See more information about KOUHSARI, S. M. on Web of Science
 
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (836 KB) | Citation | Downloads: 1,998 | Views: 4,297

Author keywords
transformers, internal fault, decomposition algorithm, distributed simulation

References keywords
power(13), systems(7), transformers(6), transformer(5), faults(5), studies(4), piecewise(4), kouhsari(4), internal(4), applications(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2010-08-31
Volume 10, Issue 3, Year 2010, On page(s): 48 - 54
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2010.03008
Web of Science Accession Number: 000281805600008
SCOPUS ID: 77956621326

Abstract
Quick view
Full text preview
This paper presents a novel method for modeling internal faults in a power transformer. This method uses a distributed computing approach for analysis of internal fault in transient stability (T/S) studies of electrical networks using Diakoptics and large change sensitivity (LCS) concepts. The combination of these concepts by phase frame model of transformer will be used here to develop an internal fault simulation of transformers. This approach leads to a model which is compatible with commercial phasor-based software packages. Consequently, it enables calculation of fault currents in any branch of the network due to a winding fault of a power transformer. The proposed method is implemented successfully and validated by time domain software and GEC group measurement results.


References | Cited By  «-- Click to see who has cited this paper

[1] S. Jiale, Z. Jiao, G. Song, and X. Kang, "Algorithm to indentify the excitation inductance of power transformer with wye-delta connection," IET Electric Power Applications, vol.3, no.1, pp. 1-7, 2009.
[CrossRef] [Web of Science Times Cited 8] [SCOPUS Times Cited 9]


[2] S. P. Valsan, K. S. Swarup, "Protective relaying for power transformers using field programmable gate array," IET Electric Power Applications, vol. 2, no. 2, pp. 135-143, 2008.
[CrossRef] [Web of Science Times Cited 14] [SCOPUS Times Cited 14]


[3] A. Koochaki, S. M. Kouhsari, G. Ghanavati, " Transformer internal faults simulation," Advances in Electrical and Computer Engineering, vol. 8, no. 2, pp. 23-28, 2008.
[CrossRef] [Full Text] [Web of Science Times Cited 5] [SCOPUS Times Cited 8]


[4] D. J. Greene, "Nonlinear modeling of transformers," IEEE Trans. on Industry Applications, vol. 24, no. 3, pp. 434-438, May/June 1988.
[CrossRef] [Web of Science Times Cited 40] [SCOPUS Times Cited 66]


[5] A. Morched, L. Marti, and J. Ottenvangers, "A high frequency transformers model for the EMTP," IEEE Trans. on Power Delivery, vol. 8, no. 3, pp. 1615-1626, July 1993.
[CrossRef] [Web of Science Times Cited 119] [SCOPUS Times Cited 169]


[6] P. Bastard, P. Bertrand, and M. Meunier, "A transformer model for winding fault studies," IEEE Trans. on Power Delivery, vol. 9, no. 2, pp. 690-699, 1994.
[CrossRef] [Web of Science Times Cited 123] [SCOPUS Times Cited 185]


[7] H. Wang, K. L. Butler, "Finite element analysis of internal winding faults in distribution transformers," IEEE Transaction on Power Delivery, vol. 16, no. 3, pp.422-428, July 2001.
[CrossRef] [Web of Science Times Cited 57] [SCOPUS Times Cited 90]


[8] A. I. Megahed, "A model for simulating internal earth faults in transformers," IEE Developments in Power System Protection Conf., pp. 359-362, 2001.
[CrossRef]


[9] P. P. Buckle, K. L. Butler, N. D. R. Sarma, A. Kopp, "Simulation of incipient transformer faults," IEEE Midwest Symposium on Circuits and Systems, pp. 50-53, 1998.
[CrossRef] [Web of Science Record] [SCOPUS Times Cited 11]


[10] H. B. Elrefaie, A. I. Megahed, "Modeling transformer internal faults using Matlab," IEEE Melecon Conf., pp. 226-230, 2002.
[CrossRef] [Web of Science Times Cited 2]


[11] G. Kron, "Diakoptics - the Piecewise Solution of Large-Scale Systems", London MacDonald, 1963.

[12] H. H. Happ, "Piecewise Methods and Applications to Power Systems", John Wiley & Sons, 1980.

[13] A. Brameller, M. N. John, M. R. Scott. Practical Diakoptics for Electrical Networks. Chapman & Hall, 1969.

[14] G. Kron, "Tonsorial analysis of integrated transmission systems: Part III. The primitive division," AIEE Trans., vol. 71, pp. 814-821, 1952.

[15] J. Vlach, K. Singhal, "Computer Methods for Circuit Analysis and Design", New York, Van Nostrand Reinhold, 1983.

[16] S. Esmaeili, S. M. Kouhsari, "A distributed simulation based approach for detailed and decentralized power system transient stability," Electric Power Systems Research, vol. 77, pp. 673-684, 2007.
[CrossRef] [Web of Science Times Cited 16] [SCOPUS Times Cited 24]


[17] A. Koochaki, S. M. Kouhsari, "Piecewise Analysis of simultaneous fault in transient stability studies," International review of electrical engineering (IREE), vol. 4, no.2, pp.191-198, April 2009.

[18] A. Kalantari, S. M. Kouhsari, "An exact piecewise method for fault studies in interconnected networks," Electrical Power and Energy Systems, vol. 30, pp. 216-225, 2008.
[CrossRef] [Web of Science Times Cited 9] [SCOPUS Times Cited 18]


[19] V. Brandwajn, H. W. Dommel, and I. I. Dommel, "Matrix representation of three-phase N-winding transformers for steady-state and transient studies," IEEE Trans. Power Apparatus and Systems, vol. PAS-101, no.6, pp. 1369-1378, June. 1982.
[CrossRef] [Web of Science Times Cited 79] [SCOPUS Times Cited 102]


[20] GEC Measurement, "Protective relays application guide", Staford-London & Wisbech, pp. 290, 1975.

References Weight

Web of Science® Citations for all references: 472 TCR
SCOPUS® Citations for all references: 696 TCR

Web of Science® Average Citations per reference: 24 ACR
SCOPUS® Average Citations per reference: 35 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2018-10-17 14:51 in 102 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2018
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: