Click to open the HelpDesk interface
AECE - Front page banner



JCR Impact Factor: 0.595
JCR 5-Year IF: 0.661
Issues per year: 4
Current issue: Feb 2018
Next issue: May 2018
Avg review time: 107 days


Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


1,875,020 unique visits
Since November 1, 2009

No robots online now


SCImago Journal & Country Rank

SEARCH ENGINES - Google Pagerank


Anycast DNS Hosting

 Volume 18 (2018)
     »   Issue 1 / 2018
 Volume 17 (2017)
     »   Issue 4 / 2017
     »   Issue 3 / 2017
     »   Issue 2 / 2017
     »   Issue 1 / 2017
 Volume 16 (2016)
     »   Issue 4 / 2016
     »   Issue 3 / 2016
     »   Issue 2 / 2016
     »   Issue 1 / 2016
 Volume 15 (2015)
     »   Issue 4 / 2015
     »   Issue 3 / 2015
     »   Issue 2 / 2015
     »   Issue 1 / 2015
  View all issues  


Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

We have the confirmation Advances in Electrical and Computer Engineering will be included in the EBSCO database.

We have the confirmation Advances in Electrical and Computer Engineering will be included in the Gale database.

Read More »


  1/2007 - 6

Measurements of Electric and Magnetic Fields Using Optoelectronic Telemetry

Click to see author's profile on See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (444 KB) | Citation | Downloads: 713 | Views: 1,942

Author keywords
No keywords available

References keywords
References keywords will be displayed on the next page reload.

About this article
Date of Publication: 2007-04-02
Volume 7, Issue 1, Year 2007, On page(s): 26 - 28
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2007.01006
Web of Science Accession Number: 000259841200006

Quick view
Full text preview
In the vicinity of the electric power network and near to the power electrical equipments the electromagnetic environment includes electric and magnetic fields, mainly at the spectral area of Extreme Low Frequencies (ELF). In some cases, very close to the working or areas of habitants, it is important to observe the values of the electric and magnetic fields and to compare those values with the appropriate biological limits and/or to the Electro-Magnetic Compatibility (EMC) limits. In these special cases the fields must be measured successfully and carefully. Therefore, the measurement equipment must have high accuracy and be as small as possible, in order to avoid any impact to the measured field values from the physical presence of the unit or of the observer. For application in these cases we develop an optoelectronic telemetry system, for measurements, of the ELF electric and magnetic fields, with small sensors in the measurement point and all the rest equipment in small distance. The system includes two electro-magnetic optoelectronic sensors, an optical transceiver and all the measurement electronic circuits. By that method we applied the two appropriate optoelectronic sensors at the measured point and in some distance (up to 100m) an optical (laser) transceiver followed by the measurement circuits. If the outcome laser beam from the transceiver strikes the optoelectronic part of these sensors. Then, that part is triggered to modulate the reflected and returned laser beam. The modulation value depends on the field value. At the receiver part of the optical transceiver, a special optical demodulator extracts the modulation signal from the incoming laser beam and the following measurement electronic circuits extracts the information with the measurement values of the electric and magnetic fields. We must point out that the few mW red beam from a diode laser, has very low power to be an injury problem to the observer or to any other person, except the case when someone stares at the laser beam (intrabeam view). In our paper we give details of the optoelectronic measurement unit, followed by the calibrating and testing results in two applications in Athens.

References | Cited By  «-- Click to see who has cited this paper

On-line references are not available - see the PDF file if available.

Copyright ©2001-2018
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania

All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.

Website loading speed and performance optimization powered by: